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ABSTRACT 
 
New measures of information including entropy, directed divergence and inaccuracy along with their generalizations 
have been introduced and their essential and desirable properties are studied. The relations between newly developed 
measures of directed divergence and the well-known standard measure of divergence existing in the literature of distance 
measures usually known as Kullback-Leibler’s measure have been established. Applications of these measures are 
provided to the field of coding theory for the study of source coding theorems. 
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INTRODUCTION 
 
Shannon (1948) founded the subject of information theory 
which is closely related to thermodynamics and physics 
through the similarity of Shannon’s uncertainty measure 
to the entropy function. It was then realized that entropy 
is a property of any stochastic system and the concept is 
now used widely in different disciplines. The tendency of 
the systems to become more disordered over time is 
described by the second law of thermodynamics, which 
states that the entropy of the system cannot spontaneously 
decrease. Today, information theory is still principally 
concerned with communications systems, but there are 
widespread applications in statistics, information 
processing and computing. Shannon (1948) entropy, also 
known as measure of uncertainty for a probability 
distribution 1 2( , ,..., )nP p p p= is given by 

1

( ) log
n

i i
i

H P p p
=

= −∑             (1.1) 

with the convention that 0log0 : 0= . It is to be noted that 
the base of logarithm is assumed to be 2, unless until 
specified. 
Besides entropy, another basic and fundamental concept 
usually applied in information theory is that of 
divergence. The most important and desirable measure of 
divergence associated with the probability distributions 

1 2( , ,..., )nP p p p= and 1 2( , ,..., )nQ q q q= is due to 
Kullback and Leibler (1951) and is given by  

1

( : ) log
n

i
i

i i

pK P Q p
q=

= ∑          (1.2) 

Another basic concept in information theory which 
connects the above two measures mathematically, that is, 
entropy and divergence, is that of inaccuracy. This 
concept is basically associated with two probability 
distributions 1 2 1 2( , ,..., ), ( , ,..., )n nP p p p Q q q q= = where 

Q  is predicted and P is true probability distribution. This 
fundamental concept was proposed by Kerridge (1961) 
and is given by  

1

( : ) log
n

i i
i

H P Q p q
=

= ∑                                      (1.3) 

The above mentioned information measures find their 
applications in a variety of disciplines such as genetics, 
finance, economics, political science, biology, analysis of 
contingency of tables, statistics, signal processing and 
pattern recognition. It is to emphasis here that the above 
mentioned non-parametric measures are not sufficient 
towards their applications in variety of disciplines. For 
instance, Shannon’s measure of entropy always leads to 
exponential families of distributions but in actual practice, 
there are many families and distributions which are not 
exponential in nature. So, restricting to Shannon’s entropy 
means restricting to exponential family only and thus 
leaving the system to be least flexible. An alternative to 
this is to use generalized parametric measures of 
information where the term ‘generalized’ does not mean 
superior or more useful but it simply means to be more 
flexible. 
 
Csiszar (1977) critically investigated Shannon’s measure 
and   summarized the significance of this measure and its 
generalizations along with their scope of applications in 
the field of coding theory.  Some other parametric 
generalizations of Shannon’s entropy have been 
investigated and studied by Renyi (1961), Havrda and 
Charvat (1967), Tsallis (1988) etc. Different types of 
information measures and their mutual relationships have 
been studied by Garrido (2011). Dahl and Osteras (2010) 
applied Shannon entropy as a measure of information 
content in survey data and defined information efficiency 
as the empirical entropy divided by the maximum 
attainable entropy. Mathai and Haubold (2007) introduced 
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generalized entropies, studied some of their properties and 
examined situations where generalized entropy of 
orderα finds its applications in a variety of mathematical 
models.  
 
Jain and Mathur (2011) proposed a new symmetric 
divergence measure and studied its properties and 
obtained its bounds in terms of some well known 
divergence measures. Furuichi and Mitroi (2012) 
introduced some parametric divergence measures 
combining existing measures of information leading to 
new inequalities. Taneja (2005) studied some interesting 
inequalities among symmetric divergence measures 
whereas some other pioneers who worked towards the 
deep study of information measures are Csiszar (2008) 
and Chen et al. (2012). 
 
The objective of the present paper is to introduce new 
measures of information and to extend their applications 
in the field of coding theory. The organization of this 
paper is as follows: In section 2 and 3, we have proposed 
new measures of entropy and studied their essential and 
desirable properties whereas section 4 and 5 deal with the 
proposal of new measures of directed divergence and 
inaccuracy respectively and the study of their properties 
for validation. In section 6, we have provided the 
applications of proposed measures to the discipline of 
coding theory. 
 
2    New non-parametric measure of entropy 
In this section, we propose a new measure of entropy to 
be called M  entropy for a probability distribution 

1 2
1

( , ,..., ), 0, 1
n

n i i
i

P p p p p p
=

⎧ ⎫= ≥ =⎨ ⎬
⎩ ⎭

∑ and study its 

essential and desirable properties. This new entropy 
measure is given by the following mathematical 
expression: 

1

1( ) 1
ipn

i i

M P
p=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏                                              (2.1) 

 Here, we take the convention that 00 : 1= . 
 
To prove that the measure (2.1) is a valid measure of 
entropy, we study its essential properties as follows: 
 

1. Obviously, ( )M P  is non-negative. 
2. ( )M P is permutationally symmetric as it does not 

change if 1 2, ,..., np p p  are reordered among 
themselves.  

3. ( )M P is a continuous function of ip for all ip ’s.  
4. Concavity: ( )M P is a concave function of ip   for 

all ip ’s 
 
To prove concavity property, we proceed as follows: 

We have   

          ( )
2

2
12

11 1

( ) 1 11 log
ipn

i i

M P p
p p p=

⎛ ⎞⎛ ⎞∂
= + − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

∏                                             

                                                                                  (2.2) 
Now, we know that for all 1,2,...,i n= , we have  
 0 1,ip≤ ≤  

           that is, ( )2 11 log 0i
i

p
p

+ − ≤ .                        (2.3) 

 Thus, using (2.3), we have 
2

2
1

( ) 0M P
p

∂
≤

∂
. 

So, ( )M P is a concave function of 1p . Similarly, it can be 
proved that  ( )M P  is a concave function of all 'ip s .  
 
Under the above conditions, the function ( )M P is a 
correct measure of entropy. Next, we study most desirable 
properties of ( )M P . 
 
1. Expansibility: We have 

1 2 1 2( , ,..., ,0) ( , ,..., )n nM p p p M p p p= . That is, the 
entropy does not change by the inclusion of an impossible 
event. 
2.   For n  degenerate distributions, we have ( ) 0.M P =  
This indicates that for certain outcomes, the     uncertainty 
should be zero.  
3. Maximization of entropy:  We use Lagrange's 
method to maximize the entropy measure (2.1) subject to 

the natural constraint
1

1
n

i
i

p
=

=∑ . In this case, the 

corresponding Lagrangian is  

1 1

1 1 1
ipn n

i
i ii

L p
p

λ
= =

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∏ ∑                              (2.4) 

Differentiating equation (2.4) with respect to 1 2, ,..., np p p  
and equating the derivatives to zero, we 

get 1 2 ... np p p= = = .This further gives 1
ip i

n
= ∀ . Thus, 

we observe that the maximum value of ( )M P arises for 
the uniform distribution and this result is most desirable. 
4.  Maximum value: The maximum value of the entropy 

is given by 1 1 1, ,..., 1M n
n n n

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

. 

Again, ' 1 1 1, ,..., 1 0M
n n n

⎛ ⎞ = >⎜ ⎟
⎝ ⎠

 . Thus, 1 1 1, ,...,M
n n n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 

an increasing function of n , which is again a desirable 
result as the maximum value of entropy should always 
increase. 
5. Non-additivity: Let 1 2( , ,..., )nP p p p=  
and 1 2( , ,..., )mQ q q q= be two independent probability 
distributions of two random variables X and Y , so that 
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( ) ( ),i i j jP X x p P Y y q= = = =  and 

( ) ( ) ( ),i j i j i jP X x Y y P X x P Y y p q= = = = = = . 
For the joint distributions of X and Y , there are nm  
possible outcomes with  probabilities ; 1,2,...,i jp q i n=  
and 1,2,...,j m= so that the entropy of the joint 
probability distribution, denoted by ( * )M P Q , is given 
by 

( )
1 1

( * ) 1i j
n m p q

i j
i j

M P Q p q
−

= =

= −∏∏         

( ) ( ) ( )

( ) ( ) ( )

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

... ... ...
1 2

... ... ...
1 2

..

.. 1

m m n m

n n m n

p q q q p q q q p q q q
n

q p p p q p p p q p p p
m

p p p

q q q

− + + + − + + + − + + +

− + + + − + + + − + + +

⎛ ⎞
= ⎜ ⎟
⎜ ⎟−⎝ ⎠

1 1

1ji

n m
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i j
i j

p q−−

= =

= −∏ ∏                                                  (2.5) 

Also, we have  ( ) ( ) ( ) ( )M P M Q M P M Q+ +      

     
1 1

1ji

n m
qp

i j
i j

p q−−

= =

= −∏ ∏                                        (2.6) 

From equation (2.5) and (2.6), we have 
( ) ( ) ( ) ( ) ( )*M P Q M P M Q M P M Q= + +  

Thus, we claim that the new measure of entropy 
( )M P introduced in (2.1) satisfies all the essential as 

well as desirable properties of being an entropy measure, 
it is a valid measure of entropy. 
 
3    Generalized parametric measure of entropy 
In this section, we propose a new generalized measure of 
entropy to be called parametric M-entropy for a 
probability distribution 

1 2
1

( , ,..., ), 0, 1
n

n i i
i

P p p p p p
=

⎧ ⎫= ≥ =⎨ ⎬
⎩ ⎭

∑ , given by the 

following mathematical expression: 
( )1

1

1 1( ) 1 , 0 , 1
1

ipn

i i

M P
p

α

α α α
α

−

=

⎛ ⎞⎛ ⎞⎜ ⎟= − > ≠⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏    

(3.1) 
with the convention that 00 : 1= . 
 
We observe that for 1α → , measure (3.1) reduces to 
Shannon’s (1948) entropy as shown    below: 

( )1

1 1 1

1 1( ) 1
1

ipn

i i

lt M P lt
p

α

αα α α

−

→ →
=

⎛ ⎞⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏                     

                 
1

log
n

i i
i

p p
=

= −∑  

Hence, this measure is a generalization of Shannon’s 
measure and in particular reduces to measure (2.1) 
for 0α = . 

Next, we study some essential properties of the 
generalized measure. 
1. ( )M Pα  is non-negative, that is, ( ) 0M Pα ≥ . 
Proof:  Case-I: When 0 1α< <                         

             

( )1

1

1 1 1 0
1

ipn

i ip

α

α

−

=
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∏      

that is, iff    
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1log 0
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α−

=
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∏       

that is, iff     
1

log 0
n

i i
i

p p
=

− ≥∑ which is true. 

 Case-II: When 1α > , we have                                                                         
                                              

       

( )1

1

1 1 1 0
1

ipn

i ip

α

α

−

=

⎛ ⎞⎛ ⎞⎜ ⎟− ≥⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏   

that is, iff     

( )1

1

1log 0
ipn

i ip

α−

=

⎛ ⎞⎛ ⎞⎜ ⎟ ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏   

 that is, iff  
1

log 0
n

i i
i

p p
=

− ≥∑ which is true. 

2. ( )M Pα  is permutationally symmetric as it does not 
change if 1 2, ,..., np p p  are re-ordered among themselves.  
3. ( )M Pα is a continuous function of ip   for all ip ’s.  
4. Concavity: ( )M Pα is a concave function of ip   for 
all ip ’s. 
To prove concavity property, we proceed as follows: We 
have   

  ( ) ( )
( )12

2
12

11 1

( ) 1 11 log 1
ipn

i i

M P p
p p p

α

α α
−

=

⎛ ⎞⎛ ⎞∂
= + − − ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

∏                                         

                                                                                  (3.2) 
Now, using (2.3) and for 0α > , we have 

( )2 11 log (1 ) 0, 1,2,....i
i

p i n
p

α+ − − ≤ = .              (3.3) 

that is 
2

2
1

( ) 0M P
p
α∂

≤
∂

. 

 So, ( )M Pα is a concave function of 1p . Similarly, it can 
be proved that   ( )M Pα  is a    concave function of 
all 'ip s . Hence, under the above conditions, the function 

( )M Pα is a correct measure of entropy. Next, we study 
the most desirable properties of ( )M Pα . 
1. Expansibility: We have 

1 2 1 2( , ,..., , 0) ( , ,..., )n nM p p p M p p pα α= .  
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2. For n  degenerate distributions, we have ( ) 0.M Pα =   
3. Maximization of entropy: Using Lagrange’s method, 
we observe that the maximum value of ( )M Pα  arises for 
the uniform distribution. 
4. Maximum value: The maximum value of the entropy 

is given by
11 1 1 1, ,...,
1

nM
n n n

α

α α

− −⎛ ⎞ =⎜ ⎟ −⎝ ⎠
 which is an 

increasing function of n , and is again a desirable result as 
the maximum value of entropy should always increase. 
 
5. Non-additivity:  
The entropy of the joint probability distribution, denoted 
by ( * )M P Qα , is given by 

( ) (1 )

1 1

1( * ) 1
1

i j
n m p q

i j
i j

M P Q p q
α

α α
− −

= =

⎛ ⎞
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∏∏                  
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ααα
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− −− −

⎛ ⎞
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1 1

1 1
1

ji

n m
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p q αα

α
− −− −

= =

⎛ ⎞
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Also, we have 

( ) ( ) ( ) ( )(1 )M P M Q M P M Qα α α αα+ + −  

              
(1 )(1 )

1 1

1 1
1

ji

n m
qp

i j
i j

p q αα

α
− −− −

= =

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∏ ∏       

(3.5) 
From equation (3.4) and (3.5), we have 

( ) ( ) ( ) ( ) ( )* (1 )M P Q M P M Q M P M Qα α α α αα= + + −  
 
Thus, we claim that the new measure of entropy  

( )M Pα introduced in (3.1) satisfies all the essential as 
well as desirable properties of being an entropy measure, 
it is a valid measure of entropy. 
 
4 Some new measures of directed divergence 
First measure of directed divergence 
We propose a new non-parametric measure of divergence 
of probability distribution 1 2( , ,..., )nP p p p= from another 
probability distribution 1 2( , ,..., )nQ q q q=  given by 
 

1 1

( : ) i i

n n
p p

i i
i i

D P Q q p− −

= =

= −∏ ∏  (4.1) 

 
Measure (4.1) is a correct measure of directed divergence 
since it satisfies the following properties 
1. ( : ) 0D P Q ≥  

Proof:   We have 

  
1 1

0i i

n n
p p

i i
i i

q p− −

= =

− ≥∏ ∏  

  iff      
1 1

log log
n n

i i i i
i i

p q p p
= =

− ≥ −∑ ∑     which is true. 

2.  ( : ) 0D P Q =  iff  P Q= . 
3. ( : )D P Q is a convex function of P  and Q . 
 Proof:  We have 
 
 

( ) ( )

2

2
1

2 2
1 1

1 11

( : )

1log 1 log 0i i

n n
p p

i i
i i

D P Q
p

q q p p
p

− −

= =

∂
=

∂

⎛ ⎞
+ − + >⎜ ⎟
⎝ ⎠

∏ ∏
 (4.2) 

( )2 1 1
1

2 2
1 1

1
( : ) 0

i

n
p

i
i

p p q
D P Q

q q

−

=

+
∂

= >
∂

∏
                          (4.3) 

From (4.2) and (4.3), it can be seen that ( : )D P Q  is a 
convex function of 1p  and 1q . Similarly, it can be proved 
that ( : )D P Q  is convex for each ip  and iq  for 

1,2,..., .i n=  
 
Second measure of directed divergence 
We propose a new generalized parametric measure of 
directed divergence of probability distribution 

1 2( , ,..., )nP p p p=  from another probability 
distribution 1 2( , ,..., )nQ q q q= , given by 

( )1

1

1( : ) 1 , 1, 1
1

ipn
i

i i

pD P Q
q

α

α α α
α

− −

=

⎛ ⎞⎛ ⎞⎜ ⎟= − > ≠⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏  (4.4) 

  
It is observed that for 1α →  in (4.4), we get Kullback-
Leibler’s (1951) measure of directed divergence. 
 
Thus, we claim that the measure (4.4) is a correct measure 
of directed divergence as it satisfies all the requisite 
properties. 
 
Third measure of directed divergence 
We introduce another parametric measure of directed 
divergence corresponding to measure of entropy (3.1), 
given by 

( ) ( )1 1

1 1

1( : )
1

i i
n n

p p
i i

i i

D P Q q pα αα

α
− − − −

= =

⎛ ⎞= −⎜ ⎟− ⎝ ⎠
∏ ∏  

for 0 1, 1.α α≤ < ≠                                                  (4.5)  
 
Measure (4.5) is a correct measure of directed divergence 
as it also satisfies the requisite properties of a measure of 
directed divergence and reduces to Kullback -Leibler 
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(1951) measure as 1α →  and hence is a generalized 
measure. In particular, for 0α = , it becomes measure 
(4.1). 
 
Relation between Kullback-Leibler measure 

( : )K P Q and the measure ( : )D P Q  
The following relationship can be established between 

( : )K P Q and ( : )D P Q . 
 
Theorem 4.1. The divergence measure ( : )K P Q  is no 
greater than divergence measure ( : )D P Q , that is, 
                      ( : ) ( : )K P Q D P Q≤                           (4.6)                 (4.8) 
Proof.  We know that   

                   
1

( : ) log
n

i
i

i i

pK P Q p
q=

= ∑  

                                    
1 1

1

i i

i

n n
p p

i i
i i

n
p

i
i

q p

p

− −

= =

−

=

−
≤
∏ ∏

∏
                     

                                 
1 1

( : )i i

n n
p p

i i
i i

q p D P Q− −

= =

≤ − =∏ ∏                            

The above relationship can also be shown with the help of 
figure 1 in which we assume 

( ),1P x x= − and ( )1 , , 0 1Q x x x= − ≤ ≤ . It is to be noted 
that natural log is taken for calculating the numerical 
values for the plot of figure 1 
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7

0 0.2 0.4 0.6 0.8 1

D(P:Q)

K(P:Q)

P=(x,1‐x)
Q=(1‐x,x)

 
Fig.1. Comparison of the ( : )K P Q and ( : )D P Q  
divergence measures for 2n = . 
 
Relation between Kullback Leibler measure 

( : )K P Q and the measure ( : )D P Qα :     
Theorem 4.2. The divergence measure ( : )K P Q  is no 
greater than divergence measure ( : )D P Qα , that is,                                  
       ( : ) ( : ), 1K P Q D P Qα α≤ >                          (4.7) 
Proof.   We know that 

        
1

( : ) log
n

i
i

i i

pK P Q p
q=
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i
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⎜ ⎟
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⎝ ⎠

∏
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1
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⎛ ⎞⎛ ⎞⎜ ⎟≤ − =⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏                      

 

Relation between Kullback Leibler measure 
( : )K P Q and the measure ( : )D P Qα  

Theorem 4.3. The divergence measure ( : )K P Q  is no 
greater than divergence measure ( : )D P Qα , that is, 
        ( : ) ( : ), 0 1K P Q D P Qα α≤ ≤ <                     (4.8) 
Proof.   We know that 

1

( : ) log
n

i
i

i i

pK P Q p
q=

= ∑  

       

( ) ( )
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1 1

1

1

1
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n
p

i
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q p

p
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αα
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=
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        ( ) ( )1 1

1 1

1 ( : )
1

i i
n n

p p
i i

i i

q p D P Qα α α

α
− − − −
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⎛ ⎞≤ − =⎜ ⎟− ⎝ ⎠
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5    New measures of Inaccuracy 
First Measure of Inaccuracy 
I. We first propose the new non-parametric measure of 
inaccuracy given by the following mathematical 
expression: 

     
1

1( : ) 1
ipn

i i

I P Q
q=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏                                      (5.1) 

The measure (5.1) represents sum of two uncertainties:                             
(i) Uncertainty due to our not knowing ( )1 2, ,..., nP p p p= , 

but knowing only ( )1 2, ,..., nQ q q q= . 
 (ii) Uncertainty of P even when P  is known. 
 
The result (i) can be measured by measure of directed 

divergence, given by 
1 1

( : ) i i

n n
p p

i i
i i

D P Q q p− −

= =

= −∏ ∏  as 

defined in (4.1). 
 
The result (ii) is measured by measure of entropy, given 

by
1

1( ) 1
ipn

i i

M P
p=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∏ as defined in (2.1).                                                

Thus, we have 
( : ) ( : ) ( )I P Q D P Q M P= +                                     (5.2) 
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Also, 
( : ) ( : ) ( ) ( )I P P D P P M P M P= + =                       (5.3) 

and 
( : ) ( )I P Q M P≥                  (5.4) 

and equality sign holds if and only if  Q P=  . 
So, measure (5.1) is an appropriate measure of inaccuracy 
as it satisfies the following properties: 
(i) ( : ) 0I P Q ≥  
(ii) ( : )I P P  is an appropriate measure of entropy.  
(iii) ( : ) ( : )I P Q I P P≥ and ( : )I P Q   reduces to 

( : )I P P  only when Q P= .  
 
Second Measure of Inaccuracy 
II. We now propose another new parametric measure of 
inaccuracy given by 

( ) ( )

( )

1 1

1 1

1

1

1
1( : ) , 1

1

i i

i

n n
p p

i i
i i

n
p

i
i

p q
I P Q

q

α α

α
α

α
α

− − − −

= =

− −

=

⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= >

−

∏ ∏

∏
   (5.4) 

For 1α → , ( : )I P Qα  reduces to Kerridge’s (1961) 
measure of inaccuracy and satisfies all the requisite 
properties of inaccuracy measure. 
 
Third Measure of Inaccuracy 
III. Next, we investigate and propose another parametric 
measure of inaccuracy, given by the following 
mathematical expression: 

( )1

1

1 1( : ) 1 , 0 1, 1
1

ipn

i i

I P Q
q

α
α α α

α

−

=

⎛ ⎞⎛ ⎞⎜ ⎟= − ≤ < ≠⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏     (5.5) 

Again, for 1α → , we have 

1 1

( : ) log
n

i i
i

lt I P Q p qα

α→
=

= −∑                     

which is Kerridge’s measure of inaccuracy and we claim 
that measure (5.5) is an appropriate  as it satisfies the 
requisite properties of inaccuracy measure. 
 
In the next section, we provide the applications of the 
measures of information developed in the above sections. 
 
6    Some new source coding theorems  
6.1    Source coding with generalized measure of 
entropy 
Source coding aims to encode the source that produces 
symbols ix  from X  with probabilities ip  where 

1

1
n

i
i

p
=

=∑  using an alphabet of size D , that is, to map each 

symbol ix  to a codeword ic  of length il  expressed using 
the D  letters of the alphabet.  If the set of lengths il  
satisfies the *Kraft’s (1949) inequality 

1

1i

n
l

i

D−

=

≤∑                                                                 (6.1)  

then there exists a uniquely decodable code with these 
lengths, which means that any sequence 1 2...i i inc c c  can be 
decoded unambiguously into a sequence of symbols 

1 2...i i inx x x  Furthermore, any uniquely decodable code 
satisfies the Kraft's inequality (6.1). The Kraft’s 
inequality is a basic result in information theory which 
gives a necessary condition for a code to be uniquely 
decipherable. Nagaraj (2009) provided a new proof of this 
inequality and its converse for prefix-free codes by a 
dynamical systems approach. Parkash and Priyanka 
(2011) developed some new results which are closely 
related with the Kraft’s inequality.  
 
The Shannon’s (1948) source coding theorem indicates 
that the mean codeword length 

1

n

i i
i

L p l
=

= ∑                                                                (6.2) 

 is bounded below by the entropy of the source, that is, 
Shannon's entropy ( )H P  and that the best uniquely 
decodable code satisfies 

( ) ( ) 1H P L H P≤ < +                                               (6.3) 
 where the logarithm in the definition of the Shannon 
entropy is taken in base D . This result indicates that the 
Shannon entropy ( )H P  is the fundamental limit on the 
minimum average length for any code constructed for the 
source. The lengths of the individual codewords, are 
given by 

logi D il p= −                                                             (6.4) 
Later, Campbell (1965) introduced the generalized mean 
codeword length, defined as 

(1 )

1

log
1

iln

D i
i

L p D
α

α
α

α
α

−

=

⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

∑                                 (6.5) 

and proved that Renyi's entropy ( )H Pα forms a lower 
bound to it subject to Kraft's inequality. Sharma and 
Raina (1980) proved coding theorems for partially 
received information. Parkash and Kakkar (2012) 
proposed two new mean codeword lengths, investigated 
that these lengths satisfy desirable properties as a measure 
of typical codeword lengths and proved new noiseless 
coding theorems subject to Kraft's inequality.  
 
Also, we have the following relation between the 
Shannon's entropy and the generalized entropy (3.1) 

( )( )( ) log H PM P Dα α=                                             (6.6) 

where log (.)α  is the α − deformed logarithm defined as 
1 1log
1

xx
α

α α

− −
=

−
 . 

Now, we consider the following two cases: 
Case-I  When 0 1,α< < we have  

( )L H P≥  
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(1 ) ( )(1 )1 1
1 1

L H PD Dα α

α α

− −− −
⇒ ≥

− −
 

( ) ( )( )log log ( )L H PK D D M Pα α α α⇒ = ≥ =                                                               
                                                                                  (6.7) 
Case-II  When 1α > , we have  

( )L H P≥  

( ) ( )( )log log ( )L H PK D D M Pα α α α⇒ = ≥ =            (6.8) 

Here comes out the new generalized length Kα  from (6.7) 
and (6.8) to which the generalized entropy ( )M Pα forms 
a lower bound. It is a monotonic increasing function of 
mean codeword length L  and it reduces to L  
when 1α → . The optimal codeword lengths are given by 

logi D il p= −  which  is  similar  to  equation  (6.4)  as  in  
case  of  Shannon's  source  coding  theorem. Kα  is not an 

average of the type ( )1

1

n

i i
i

p lφ φ−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  as introduced by 

Kolmogorov (1930) and Nagumo (1930) but is a simple 
expression of the α − deformed logarithm. 
 
Note:  When 1 2 ... nl l l l= = = = , then K lα ≠ .  Instead, it 

reduces to 
( )1 1
1

lD α

α

− −
−

 which further reduces to l  

when 1α → .The above results (6.7) and (6.8) can also be 
stated in the form of following theorem: 
 
Theorem 6.1. If 1 2, ,..., nl l l  denote the lengths of the 
uniquely decipherable code for the random variable X , 
then ( )K M Pα α≥ with equality if and only 
if logi D il p= − .              
Proof.  We have to minimize the following codeword 
length: 

( )
1

1

1
1

n

i i
i

p l

DK
α

α α

=

− ∑
−

=
−

                                                  (6.9) 

 subject to the Kraft's (1949) inequality 

1

1i

n
l

i

D−

=

≤∑      

The corresponding Lagrangian is given by 
( )

1

1

1

1 1
1

n

i i
i

i

p l
n

l

i

DJ D
α

λ
α

=

−

−

=

∑
− ⎛ ⎞= + −⎜ ⎟− ⎝ ⎠

∑                        (6.10) 

 
Differentiating (6.10) with respect to ; 1,2,...,il i n=  and 
equating to zero, we get 

il
ip Dλ −=                                                               (6.11) 

Using 
1

1i

n
l

i

D−

=

=∑  and
1

1
n

i
i

p
=

=∑ , equation (6.11) gives 

1λ =  and hence il
ip D−= , that is, logi D il p= −  

Substituting il  in (6.9), we get the minimum value of 
Kα as 

[ ]
( )1

min
1

1 1 1 ( )
1

ipn

i i

K M P
p

α

α αα

−

=

⎛ ⎞⎛ ⎞⎜ ⎟= − =⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏  

 

6.2 Shannon's source coding via new measures of 
directed divergence                       
 We know that the measure of directed divergence 

( ):D P Qα as given by (4.4) is non-negative, that is, 
( )1

1

1( : ) 1 0, 1
1

ipn
i

i i

pD P Q
q

α

α α
α

− −

=

⎛ ⎞⎛ ⎞⎜ ⎟= − ≥ >⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
∏          (6.12) 

Substituting 

1

, 1,2,...,
i

i

l

i n
l

i

Dq i n
D

−

−

=

= =

∑
 in (6.12), we get  

( )1

1 1

1
i

i

i

pn n
li

l
i i

p D
D

α− −
−

−
= =

⎛ ⎞⇒ ≥⎜ ⎟
⎝ ⎠

∏ ∑                               (6.13)  

1 1 1

log log i

n n n
l

i D i D i i
i i i

p p D p l L−

= = =

⇒ − − ≤ =∑ ∑ ∑  

Now, since 
1

i

n
l

i

D−

=
∑   lies between 1D−  and1, therefore 

the lower bound for L  lies between ( )H P and ( ) 1H P + .  
Hence, we obtain the following result                             

( ) ( ) 1H P L H P≤ < +  
which is the Shannon's source coding theorem for 
uniquely decipherable codes. 

Note: On substituting 1 , 1,2,...,iq i n
n

= =  in (6.12) and 

then taking logarithms both sides, we get 
( ) logDH P n≤                                                        (6.14) 

which is a known result in information theory that shows 
that maximum value  of Shannon's entropy can never be 
greater than logD n . 
 
Similarly, if we take the non-negativity of the measure of 
directed divergence given in equation (4.1) and substitute 

1

, 1,2,...,
i

i

l

i n
l

i

Dq i n
D

−

−

=

= =

∑
 in it, we get 

1 1

1

i

i
i

i

p

ln n
p

ln
li i

i

D p
D

−

−
−

−= =

=

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≥
⎜ ⎟
⎜ ⎟
⎝ ⎠

∏ ∏
∑

                                    (6.15) 

 
Taking logarithms on both sides of (6.14) and 
simplifying, we again arrive at inequality (6.3). 
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Proceeding on similar lines and using the non-negativity 
of the measure of directed divergence given by (4.5), we 
again get the Shannon’s source coding theorem. 
 
Concluding Remarks: The measures of entropy find 
tremendous applications in a variety of disciplines viz, 
biological, economical, physical sciences. Similarly, the 
measures of divergence have proved to be very useful in a 
various disciplines of engineering sciences. Since a single 
measure of information cannot be adequate for each 
discipline, we need a variety of generalized information 
measure to extend the scope of their applications. Further, 
these generalized measures induce flexibility into the 
system and hence preferred towards optimization 
problems. Keeping this idea in mind, we have generated 
various information measures for the discrete probability 
distribution and provided their applications in field of 
coding theory. With similar arguments, a variety of 
information theoretic measures can be developed for 
continuous probability distributions. 
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